Saltar al contenido
Home » Football » Bahia contra Nautico

Bahia contra Nautico

Overview and Expert Analysis: Bahia vs Nautico

Este enfrentamiento entre Bahia y Nautico es uno de los encuentros más esperados este 7 de junio de 2025 a las 20:30 h. Ambos equipos tienen un historial impresionante y esta confrontación promete ser intensa. Los aficionados están expectantes ante las posibilidades de goles y resultados que este partido podría ofrecer. Desde el análisis del promedio histórico de goles a las últimas actuaciones de ambos equipos, esta revisión está diseñada para ofrecer un análisis exhaustivo del partido con un enfoque en las oportunidades de apuestas y pronósticos.

Predictions Analysis

Primer Tiempo (1st Half)

  • Away Team Not To Score In 1st Half: 97.80
  • Both Teams Not To Score In 1st Half: 98.90
  • Home Team To Score In 1st Half: 98.30

Segundo Tiempo (2nd Half)

  • Home Team To Score In 2nd Half: 98.20
  • Away Team To Score In 2nd Half: 68.00

Outcome Predictions

  • Home Team To Win: 83.30
  • Over 2.5 Goals: 77.90
  • Over 1.5 Goals: 75.60
  • Both Teams To Score: 60.10
  • Over 2.5 BTTS: 63.20

Average Goals

  • Avg. Total Goals: 4.83
  • Avg. Goals Scored: 2.93
  • Avg. Conceded Goals: 2.00

Expert Predictions

Dadas las probabilidades relativamente altas de que el equipo local Bahia anote en ambos tiempos, junto con una tendencia de anotación ligeramente superior en promedio, se espera que el Bahia desempeñe un papel crucial en este encuentro. El hecho de que el Bahia tenga altas probabilidades de anotar en la primera mitad (98.30%) destaca su capacidad ofensiva temprana en el partido. Aun así, debe tomarse en cuenta la posibilidad de que el Nautico pueda marcar en la segunda mitad (68.00%), apuntando a un partido potencialmente abierto con posibles altibajos emocionantes.

El pronóstico para una victoria del Bahia (83.30%) se ve reforzado por el historial reciente del equipo y su capacidad para mantener presión constante sobre el arco rival. Sin embargo, la probabilidad de más de 2.5 goles (77.90%) sugiere un partido abierto y emocionante, lo cual aumenta las oportunidades para los apostadores que buscan un juego de altos goles.

Con estos datos en mente, el enfoque para los apostadores debería poner atención no solo en el resultado final del Bahia para ganar, sino también en la intensidad del juego que podría resultar en una contienda de goles. Con un promedio histórico de aproximadamente 4.83 goles por partido, los entusiastas del fútbol pueden anticipar un evento lleno de acción y estrategias emocionantes.

Bahia

WLWLL
-

Nautico

LDLLW
Date: 2025-06-07
Time: 20:30
(FT)
Venue: Not Available Yet
Score: 3-1

Predictions:

MarketPredictionOddResult
Away Team Not To Score In 1st Half98.70%(3-1)
Both Teams Not To Score In 1st Half99.00%(3-1)
Home Team To Score In 1st Half98.10%(3-1)
Home Team To Score In 2nd Half98.40%(3-1)
Home Team To Win84.80%(3-1) 1.46
Over 2.5 Goals76.10%(3-1) 1.80
Over 1.5 Goals74.50%(3-1) 1.26
Away Team To Score In 2nd Half67.60%(3-1)
Both Teams To Score63.40%(3-1) 2.05
Over 2.5 BTTS60.20%(3-1) 2.40
Avg. Total Goals4.93%(3-1)
Avg. Goals Scored2.73%(3-1)
Avg. Conceded Goals1.60%(3-1)

Esta estructura presente en HTML proporciona un informe SEO-friendly con bloques claramente definidos que facilitan a los lectores entender fácilmente los pronósticos y el análisis de expertos sobre el partido entre Bahia y Nautico.
[0]: #!/usr/bin/env python
[1]: # -*- coding: utf-8 -*-

[2]: import os
[3]: import math
[4]: import torch
[5]: import torch.nn as nn
[6]: from torch.nn import Identity
[7]: from torch.nn.functional import interpolate
[8]: from ..registry import BACKBONES
[9]: from ..utils import ConvModule
[10]: from mmcv.runner import load_checkpoint
[11]: from mmcv.cnn import constant_init, kaiming_init

[12]: class BottleneckV1b(nn.Module):
[13]: expansion = 4

[14]: def __init__(
[15]: self,
[16]: spatial_stride,
[17]: temporal_stride,
[18]: dilation,
[19]: inplanes,
[20]: planes,
[21]: downsample,
[22]: style,
[23]: if_inflate=True,
[24]: conv_cfg=None,
[25]: norm_cfg=dict(type=’BN3d’),
[26]: with_cp=False,
[27]: inflate_style=’3x1x1′,
[28]: non_local=False,
[29]: non_local_cfg=dict()):
[30]: «»»Bottleneck block for ResNet.

[31]: If style is «pytorch», the stride-two layer is the 3×3 conv layer,
[32]: if it is «caffe», the stride-two layer is the first 1×1 conv layer.

[33]: if_inflate is used for inflate layers or not, useful for feature
[34]: extraction.
[35]: «»»
[36]: super(BottleneckV1b, self).__init__()
[37]: assert style in [‘pytorch’, ‘caffe’]
[38]: assert inflate_style in [‘3x1x1’, ‘3x3x3’]
[39]: self.inplanes = inplanes
[40]: self.planes = planes
[41]: if style == ‘pytorch’:
[42]: self.conv1_stride = 1
[43]: self.conv2_stride = spatial_stride
[44]: self.conv1_stride_t = 1
[45]: self.conv2_stride_t = temporal_stride
[46]: else:
[47]: self.conv1_stride = spatial_stride
[48]: self.conv2_stride = 1
[49]: self.conv1_stride_t = temporal_stride
[50]: self.conv2_stride_t = 1

[51]: self.conv1 = nn.Conv3d(
[52]: inplanes,
[53]: planes,
[54]: kernel_size=(1, 1, 1),
[55]: stride=(self.conv1_stride_t, self.conv1_stride, self.conv1_stride),
[56]: bias=False)
[57]: self.norm1_name, norm1 = build_norm_layer(norm_cfg, planes, postfix=1)
[58]: self.add_module(self.norm1_name, norm1)

[59]: self.conv2 = nn.Conv3d(
[60]: planes,
[61]: planes,
[62]: kernel_size=(3, 3, 3),
[63]: stride=(self.conv2_stride_t, self.conv2_stride, self.conv2_stride),
[64]: padding=dilation,
[65]: dilation=dilation,
[66]: bias=False)
[67]: self.norm2_name, norm2 = build_norm_layer(norm_cfg, planes, postfix=2)
[68]: self.add_module(self.norm2_name, norm2)

[69]: self.conv3 = nn.Conv3d(
[70]: planes, planes * self.expansion, kernel_size=1, bias=False)
[71]: self.norm3_name, norm3 = build_norm_layer(
[72]: norm_cfg, planes * self.expansion, postfix=3)
[73]: self.add_module(self.norm3_name, norm3)

[74]: self.relu = nn.ReLU(inplace=True)
[75]: self.downsample = downsample
[76]: self.spatial_tride = spatial_stride
[77]: self.temporal_tride = temporal_stride
[78]: self.dilation = dilation
[79]: self.with_cp = with_cp

[80]: if if_inflate:
[81]: self.conv2 = inflate(self.conv2,.inflate_style)
[82]: if non_local and non_local_cfg is not None:
[83]: non_local_cfg_ = non_local_cfg.copy()
[84]: non_local_cfg_[‘in_channels’] = planes
[85]: self.non_local = NonLocal3d(**non_local_cfg_)
[86]: else:
[87]: self.non_local = None

[88]: @property
[89]: def norm1(self):
[90]: return getattr(self, self.norm1_name)

[91]: @property
[92]: def norm2(self):
[93]: return getattr(self, self.norm2_name)

[94]: @property
[95]: def norm3(self):
[96]: return getattr(self, self.norm3_name)

[97]: def forward(self, x):
[98]: «»»Forward function.»»»

[99]: def _inner_forward(x):
[100]: identity = x

[101]: out = self.conv1(x)
[102]: out = self.norm1(out)
[103]: out = self.relu(out)

[104]: out = self.conv2(out)
[105]: out = self.norm2(out)
[106]: out = self.relu(out)

[107]: if self.non_local is not None:
[108]: out = self.non_local(out)

[109]: out = self.conv3(out)
[110]: out = self.norm3(out)

[111]: if self.downsample is not None:
[112]: identity = self.downsample(x)

[113]: out += identity

[114]: return out

[115]: if self.with_cp and x.requires_grad:
[116]: out = cp.checkpoint(_inner_forward, x)
[117]: else:
[118]: out = _inner_forward(x)
[119]: out = self.relu(out)

[120]: return out

[121]: @BACKBONES.register_module()
[122]: class SlowFast(nn.Module):
[123]: «»»SlowFast networks (SlowFast) builder.

[124]: Ref paper:
[125]: Feichtenhofer, C., Fan, H., Malik, J., & He, K.:
[126]: SlowFast networks for video recognition.

[127]: Args:
[128]: spatial_strides (Sequence[int]): Spatial strides of the block layers.
[129]: temporal_strides (Sequence[int]): Temporal strides of the block layers.
[130]: dilations (Sequence[int]): Dilation of the block layers.
[131]: out_indices (Sequence[int]): Output from which stages.
[132]: style (str): `pytorch` or `caffe`. If set to «pytorch», the stride-two
[133]: layer is the 3×3 conv layer, otherwise the stride-two layer is
[134]: the first 1×1 conv layer.
[135]: frozen_stages (int): Stages to be frozen (all param fixed). -1 means
[136]: not freezing any parameters.
[137]: norm_cfg (dict): Dictionary to construct and config norm layer.
[138]: norm_eval (bool): Whether to set norm layers to eval mode, namely,
[139]: freeze running stats (mean and var). Note: Effect on Batch Norm
[140]: and its variants only.
[141]: with_cp (bool): Use checkpoint or not. Using checkpoint will save some
[142]: memory while slowing down the training speed.
[143]: zero_init_residual (bool): whether to use zero init for last norm layer
[144]: in resblocks to let them behave as identity.
[145]: inflate_style (str): `3x1x1` or `3x3x3`. which kernel size to use for
[146]: conv1 and conv2 in spatial dimensions for inflated layers.
[147]: inflate_freq (int): which sptial block to start inflate.
[148]: non_local_stages (Sequence[int]): which stages would use `Non_local`.
[149]: non_local_cfg (dict): config for Non-local module.
[150]: «»»

[151]: arch_settings = {
[152]: # key: (depths, channels, mitrates) ??
[153]: 50: ((3, 4, 6, 3), (256, 512, 1024, 2048), (1, 1, 1, 1)),
[154]: } # yapf: disable

[155]: def __init__(
[156]: self,
[157]: T=8,
[158]: F=7,
[159]: pretrained=None,
[160]: width_mult_s=1.,
[161]: width_mult_f=1.,
[162]: dropout=0.5,
[163]: fusion_conv_channel_ratio=2,
[164]: fusion_kernel_size=5,
[165]: width_per_group=64,
[166]: num_groups=1,
[167]: depths=[3,4,6,3],
[168]: dims=[128,256,512,1024],
[169]: start_fusion=1,
[170]: extract_levels=[0,1,2,3],
[171]: extract_channels=[128,256,256,512],
[172]: fusion_conv_channel_ratio=[2,4],
[173]: fusion_kernel_sizes=[[5,5],[3]],

):

# yolov5 model setting

#’model’: {‘pretrained’: None,’depth_multiple’: 0.33,’width_multiple’: 0.50,’img_size’: 640},

# yolov5 backbone setting
#’backbone’: {‘depths’: [3, 6, 6, 3],’channels’: [32, 64, 128, 256],’scales’: [4,8]},

#’backbone’: {‘depths’: [3,6],’channels’: [32,64],’start_filts’: [32],’feature_size’: [1408]},
# ‘backbone’: {‘depths’: [3,6],’channels’: [32],’start_filts’:[16],’feature_size’: [512]},
‘backbone’: {‘depths’: [3],’channels’: [32],’start_filts’:[16],’feature_size’: [256]},

# yolov5 head setting
#’head’: {‘channels’: [256],’in_feature_size’: [256],’out_feature_size’: [256]},

#’head’: {‘channels’: [128],’in_feature_size’: [1408],’out_feature_size’: [128]},

#’head’: {‘channels’: [256],’in_feature_size’: [1408],’out_feature_size’: [128]},
‘head’: {‘channels’: [256],’in_feature_size’: [512],’out_feature_size’: [128]},
#’head’: {‘channels’: [256],’in_feature_size’: [1280],’out_feature_size’: [128]},
# ‘head’: {‘channels’: [64],’in_feature_size’: [512],’out_feature_size’: [128]},

# depth=depths channels=dims start_filts=dims[fusion_conv_channel_ratio[-1]*2]
# slowfast model setting
# bottlenecks[‘stage{}’.format(i + 1)]

#self.make_bottlenecks_stage(inputs, tmp_inputs)

#self.make_fusion(cin =64*cur_channels*cur_block.expansion,cout=128*cur_channels*cur_block.expansion,kernel_size=kernel_size)

# {stage: slowfast_bottlenecks} stages

#self._size_divisibility = max(
# int(np.ceil(max(pool)) + spatial_stride[-1]),
# int(np.ceil(max(strides)))
#)

#self.num_stages=len(inputs)
#self.depths=depths
#self.dim_per_group=dims[num_groups:]
#self.channels=dims